Smash Company Splash Image

March 27th, 2017

In Philosophy

1 Comment

Complexity emerges when a system has transitions that demand a different kind of math

(written by lawrence krubner, however indented passages are often quotes). You can contact lawrence at: lawrence@krubner.com

Interesting:

When we observe the largest scale behaviors of a system, we simplify the mathematical description of the system because there are fewer distinguishable states, and only a limited set of possible behaviors. This also means that systems that look different on a microscopic scale may not look different at the macroscopic scale, and their mathematical descriptions become the same.

An important example of this arose in the study of phase transitions using the new mathematics of renormalization group. The transition when boiling a liquid to a gas has the same properties as the one that occurs when a heating a magnet up to the point where it becomes non-magnetic (ferromagnet to paramagnetic transition). Magnets have local magnetizations that fluctuate and interact at a critical point just like local changes of density at the water to vapor critical point. The result is that these two seemingly different types of systems map mathematically onto each other.

As renormalization group was more widely applied, other instances were found of systems that have the same behavior even though they differ in detail, a concept that became referred to as universality. Still, while many systems have the same behavior, there are multiple distinct behaviors. Together this means that systems fall into classes of behaviors, leading to the term ‘universality class.’ Since renormalization group focuses on how behaviors transform across scales leading to power laws, the value of the power law exponent became used as a signature of the universality class.

In a sense, the idea that many systems can be described by the same large scale behavior is used in traditional theory. Scientists use the normal distribution for many different biological and social systems. Any system having sufficiently independent components, satisfies the axioms of the central limit theorem, and therefore can be described by the normal distribution. When there are dependencies, the normal distribution no longer applies, but there are other behaviors that are characteristic of other kinds of dependencies. To study those behaviors, we have to determine the way different kinds of dependencies give rise to kinds of large scale behavior.

There are even more basic ways a common mathematical description of systems is used, e.g., point particle motion describes the motion of many distinct objects, and wave equations describe everything from music strings to water waves to light. Even though the specific systems are very different, the dependencies that give rise to their behaviors, and the behaviors themselves, are related mathematically.

How does universality work for complex systems? Unlike traditional renormalization group, we do not consider the limit of infinite size and power law exponents. Instead, the states of our representation must correspond to the states of the system at the scale of observation. Moreover, instead of describing the equilibrium energy, we describe dynamics and system response. The mathematical representation of one system at a particular scale may correspond to the behavior of other systems despite different underlying components.

Source



Check out my book:





RECENT COMMENTS

February 5, 2018 2:53 pm

From Joaquin Tucholski on Richard Feynman believed in failing fast

"We are going to construct a physique of information which we can truly declare for ourselves and which we ar..."

January 29, 2018 12:09 am

From lawrence on Sarah Kessler attacks Steve Yegge over so-called privilege

"Josh Rehman, thank you for writing. What you write is interesting. Kessler is not explicit about what she ..."

January 27, 2018 8:23 pm

From Josh Rehman on Sarah Kessler attacks Steve Yegge over so-called privilege

"Kessler hints at her goal with this line in the last paragraph: "The blog post displays a lack of awareness fo..."

January 11, 2018 8:51 am

From Karthik Raghunathan on One-on-one meetings are underrated, whereas group meetings waste time

"the great kathy sierra has covered one aspect of this in one of her posts : http://headrush.typepad.com/creat..."

January 7, 2018 8:12 pm

From lawrence on One-on-one meetings are underrated, whereas group meetings waste time

"A good article here: https://hbr.org/2014/03/why-good-managers-are-so-rare If great managers seem scarce..."

January 7, 2018 5:14 pm

From lawrence on One-on-one meetings are underrated, whereas group meetings waste time

"I had another thought about this. I think many businesses tend to promote extroverts, on the assumption th..."

January 5, 2018 4:49 pm

From lawrence on One-on-one meetings are underrated, whereas group meetings waste time

"Also worth reading is this article which reminds me how many terrible managers there are. If you run a large c..."

January 3, 2018 5:50 pm

From lawrence on One-on-one meetings are underrated, whereas group meetings waste time

"Rodrigo Dias, thank you for writing. I should have emphasized the bit about the French going to dinner. I agre..."

January 3, 2018 4:52 am

From Rodrigo Dias on One-on-one meetings are underrated, whereas group meetings waste time

"I agree with management through O3 (I've written about it here..."

January 1, 2018 12:14 pm

From Sergei on One-on-one meetings are underrated, whereas group meetings waste time

"This is too much witch hunt. If you have a one on one just so you can figure out who to blame for a problem th..."

December 30, 2017 8:25 pm

From lawrence on One-on-one meetings are underrated, whereas group meetings waste time

"Will Pemble, I agree. The key issue is delegation. To be productive at the personal level, we must learn to de..."

December 29, 2017 12:29 pm

From Will Pemble on One-on-one meetings are underrated, whereas group meetings waste time

"Lawrence, Your recount of a marketing meeting is a great example of circular conversation. Busy people rarely..."

December 28, 2017 7:59 pm

From lawrence on Retail is suffering because the middle classes have lost $1,355 trillion in income since 1970

"I suppose we should round that to $1.356 trillion...."

December 28, 2017 7:15 pm

From Anonymous on Retail is suffering because the middle classes have lost $1,355 trillion in income since 1970

"Apparently, $1,355,610,000,000 = $1,355 trillion...."

December 28, 2017 12:51 pm

From lawrence on Business productivity has been undermined by the hubris and power-grabbing of elite computer programmers

""By Just A Programmer", thank you for writing. I think we agree that top level programmers should be focused o..."

1 COMMENT

November 19, 2017
2:14 pm

By lawrence

This is a branch of math that I hope to study a lot more. These transitions. Fractal math and dynamic systems.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>