Maybe DNA is like precompiled software, but where is the compiler?

(written by lawrence krubner, however indented passages are often quotes). You can contact lawrence at: lawrence@krubner.com, or follow me on Twitter.

Interesting:

In two new papers, Jose argues that DNA is just the ingredient list, not the set of instructions used to build and maintain a living organism. The instructions, he says, are much more complicated, and they’re stored in the molecules that regulate a cell’s DNA and other functioning systems.

Jose outlined a new theoretical framework for heredity, which was developed through 20 years of research on genetics and epigenetics, in peer-reviewed papers in the Journal of the Royal Society Interface and the journal BioEssays. Both papers were published on April 22, 2020.

Jose’s argument suggests that scientists may be overlooking important avenues for studying and treating hereditary diseases, and current beliefs about evolution may be overly focused on the role of the genome, which contains all of an organism’s DNA.

“DNA cannot be seen as the ‘blueprint’ for life,” Jose said. “It is at best an overlapping and potentially scrambled list of ingredients that is used differently by different cells at different times.”

For example, the gene for eye color exists in every cell of the body, but the process that produces the protein for eye color only occurs during a specific stage of development and only in the cells that constitute the colored portion of the eyes. That information is not stored in the DNA.

In addition, scientists are unable to determine the complex shape of an organ such as an eye, or that a creature will have eyes at all, by reading the creature’s DNA. These fundamental aspects of anatomy are dictated by something outside of the DNA.

Jose argues that these aspects of development, which enable a fertilized egg to grow from a single cell into a complex organism, must be seen as an integral part of heredity. Jose’s new framework recasts heredity as a complex, networked information system in which all the regulatory molecules that help the cell to function can constitute a store of hereditary information.

Source