# When can intuition succeed?

(written by lawrence krubner, however indented passages are often quotes). You can contact lawrence at: lawrence@krubner.com

SourceHow big is this upper bound? Mathematicians have often made errors in proofs. But it’s rarer for ideas to be accepted for a long time and then rejected. But we can divide errors into 2 basic cases corresponding to type I and type II errors:

Mistakes where the theorem is still true, but the proof was incorrect (type I)

Mistakes where the theorem was false, and the proof was also necessarily incorrect (type II)

Before someone comes up with a final answer, a mathematician may have many levels of intuition in formulating & working on the problem, but we’ll consider the final end-product where the mathematician feels satisfied that he has solved it. Case 1 is perhaps the most common case, with innumerable examples; this is sometimes due to mistakes in the proof that anyone would accept is a mistake, but many of these cases are due to changing standards of proof. For example, when David Hilbert discovered errors in Euclid’s proofs which no one noticed before, the theorems were still true, and the gaps more due to Hilbert being a modern mathematician thinking in terms of formal systems (which of course Euclid did not think in). (David Hilbert himself turns out to be a useful example of the other kind of error: his famous list of 23 problems was accompanied by definite opinions on the outcome of each problem and sometimes timings, several of which were wrong or questionable4.) Similarly, early calculus used infinitesimals which were sometimes treated as being 0 and sometimes treated as an indefinitely small non-zero number; this was incoherent and strictly speaking, practically all of the calculus results were wrong because they relied on an incoherent concept – but of course the results were some of the greatest mathematical work ever conducted5 and when later mathematicians put calculus on a more rigorous footing, they immediately re-derived those results (sometimes with important qualifications). Other cases are more straightforward, with mathematicians publishing multiple proofs/patches or covertly correcting papers6. Poincaré points out this mathematical version of the pessimistic induction in Intuition and Logic in Mathematics:

Strange! If we read over the works of the ancients we are tempted to class them all among the intuitionalists. And yet nature is always the same; it is hardly probable that it has begun in this century to create minds devoted to logic. If we could put ourselves into the flow of ideas which reigned in their time, we should recognize that many of the old geometers were in tendency analysts. Euclid, for example, erected a scientific structure wherein his contemporaries could find no fault. In this vast construction, of which each piece however is due to intuition, we may still to-day, without much effort, recognize the work of a logician.

… What is the cause of this evolution? It is not hard to find. Intuition can not give us rigour, nor even certainty; this has been recognized more and more. Let us cite some examples. We know there exist continuous functions lacking derivatives. Nothing is more shocking to intuition than this proposition which is imposed upon us by logic. Our fathers would not have failed to say: It is evident that every continuous function has a derivative, since every curve has a tangent. How can intuition deceive us on this point?

… I shall take as second example Dirichlet’s principle on which rest so many theorems of mathematical physics; to-day we establish it by reasonings very rigorous but very long; heretofore, on the contrary, we were content with a very summary proof. A certain integral depending on an arbitrary function can never vanish. Hence it is concluded that it must have a minimum. The flaw in this reasoning strikes us immediately, since we use the abstract term function and are familiar with all the singularities functions can present when the word is understood in the most general sense. But it would not be the same had we used concrete images, had we, for example, considered this function as an electric potential; it would have been thought legitimate to affirm that electrostatic equilibrium can be attained. Yet perhaps a physical comparison would have awakened some vague distrust. But if care had been taken to translate the reasoning into the language of geometry, intermediate between that of analysis and that of physics, doubtless this distrust would not have been produced, and perhaps one might thus, even to-day, still deceive many readers not forewarned.

…A first question presents itself. Is this evolution ended? Have we finally attained absolute rigour? At each stage of the evolution our fathers also thought they had reached it. If they deceived themselves, do we not likewise cheat ourselves?

We believe that in our reasonings we no longer appeal to intuition; the philosophers will tell us this is an illusion. Pure logic could never lead us to anything but tautologies; it could create nothing new; not from it alone can any science issue. In one sense these philosophers are right; to make arithmetic, as to make geometry, or to make any science, something else than pure logic is necessary.

December 16, 2018 9:06 am

From lawrence on Yair Lapid: What does it say about us that Israel has become the only democracy in the world in which Jews don’t have freedom of religion?

"Cat Mara, thank you for catching that. I've fixed it now. (The URL was a "v" by mistake. Looks like I was tryi..."