How to combine novelty search with fitness-based evolution

(written by lawrence krubner, however indented passages are often quotes). You can contact lawrence at: lawrence@krubner.com

I need to go back and read this whole article:

Novelty search is a state-of-the-art evolutionary approach that promotes behavioural novelty instead of pursuing a static objective. Along with a large number of successful applications, many different variants of novelty search have been proposed. It is still unclear, however, how some key parameters and algorithmic components influence the evolutionary dynamics and performance of novelty search. In this paper, we conduct a comprehensive empirical study focused on novelty search’s algorithmic components. We study the “k” parameter — the number of nearest neighbours used in the computation of novelty scores; the use and function of an archive; how to combine novelty search with fitness-based evolution; and how to configure the mutation rate of the underlying evolutionary algorithm. Our study is conducted in a simulated maze navigation task. Our results show that the configuration of novelty search can have a significant impact on performance and behaviour space exploration. We conclude with a number of guidelines for the implementation and configuration of novelty search, which should help future practitioners to apply novelty search more effectively.

Source